Monday, December 14, 2009

NBP Against Bacteria/Fungi:


Long before the discovery of the existence of microbes, the idea that certain plants had healing potential, indeed, that they contained what we would currently characterize as antimicrobial principles, was well accepted. Since antiquity, humans have used plants to treat common infectious diseases, and some of these traditional medicines are still included as part of the habitual treatment of various maladies. For example, the use of bearberry  and cranberry juice to treat urinary tract infections is reported in different manuals of phytotherapy, while species such as lemon balm, garlic, and tee tree are described as broad-spectrum antimicrobial agents. That being said, it has generally been the essential oils of these plants rather than their extracts that have had the greatest use in the treatment of infectious pathologies in the respiratory system, urinary tract, gastrointestinal, and biliary systems, as well as on the skin. In the case of Melaleuca alternifolia, for example, the use of the essential oil  is a common therapeutic tool to treat acne and other infectious troubles of the skin.

Antimicrobial resistance is one of the biggest challenges facing global public health. Although antimicrobial drugs have saved many lives and eased the suffering of many millions, poverty, ignorance, poor sanitation, hunger and malnutrition, inadequate access to drugs, poor and inadequate health care systems, civil conflicts and bad governance in developing countries have tremendously limited the benefits of these drugs in controlling infectious diseases. The development of resistance in the responsible pathogens has worsened the situation, often with very limited resources to investigate and provide reliable susceptibility data on which rational treatments can be based as well as the means to optimize the use of antimicrobial agents. The emergence of multidrug-resistant isolates in tuberculosis, acute respiratory infections, and diarrhea, often referred to as the diseases of poverty, has had its greatest toll in developing countries. The epidemic of HIV/AIDS, with over 30 million cases in developing countries, has greatly enlarged the population of immunocompromised patients. The disease has left these patients at great risk of numerous infections and even greater risk of acquiring highly resistant organisms during long periods of hospitalization.




Antibiotic resistance can occur via three general mechanisms: prevention of interaction of the drug with target, efflux of the antibiotic from the cell, and direct destruction or modification of the compound. The emergence of multidrug resistance in human and animal pathogenic bacteria as well as undesirable side-effects of certain antibiotics has triggered immense interest in the search for new antimicrobial drugs of plant origin. Ahmad and Beg  tested alcoholic extracts of 45 traditionally used Indian medicinal plants against drug-resistant bacteria and fungi  both related to the critical prognosis and treatment of infectious diseases in immunocompromised, AIDS and cancer patients. Of these, 40 plant extracts showed varied levels of antimicrobial activity against one or more test bacteria. Anticandidal activity was detected in 24 plant extracts. Overall, broad-spectrum antimicrobial activity was observed in 12 plants . Several other studies have also demonstrated the importance of new bioactive phytocompounds against multidrug-resistant bacteria/fungi.



Useful antimicrobial phytochemicals can be divided into several categories summarized . Scientists from divergent fields are investigating plants anew with an eye to their antimicrobial usefulness. A sense of urgency accompanies the search as the pace of species extinction continues. Laboratories of the world have found literally thousands of phytochemicals which have inhibitory effects on all types of microorganisms in vitro. More of these compounds should be subjected to animal and human studies to determine their effectiveness in whole-organism systems, including in particular toxicity studies as well as an examination of their effects on beneficial normal microbiota.

It would be advantageous to standardize methods of extraction and in vitro testing so that the search could be more systemtic and interpretation of results facilitated. Also, alternative mechanisms of infection prevention and treatment should be included in initial activity screenings. Disruption of adhesion is one example of an anti-infection activity not commonly screened currently. Attention to these issues could usher in a badly needed new era of chemotherapeutic treatment of infection by using plant-derived principles.

No comments: